Hall	Ticket	Number:	

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (EEE: CBCS) III-Semester Main Examinations, December-2018

Electromagnetic Field Theory

Time: 3 hours

Max. Marks: 60

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q.No.	Stem of the question	Μ	L	CO	PO
	Part-A $(10 \times 2 = 20 \text{ Marks})$				
1.	Determine the gradient of the given field $V = \rho z \sin \phi + z^2 \cos^2 \phi + \rho^2$.	2	3	1	1,2,3
	Evaluate the electrostatic force of repulsion between two α -particles of charge 4×10^{-19} C each and separated by distance of 10^{-10} Cm.	2	3	1	1,2,3
3.	Define the terms i) dipole moment ii) Polarization.	2	1	2	2,3,10
	An electric field from a medium whose relative permittivity is 8 passes into a medium of relative permittivity 3. If E makes an angle of 45° with the boundary normal then what angle does the field makes with the interface in the second dielectric.	2	2	4	1,2,3,4, 10
5.	Given the magnetic flux density $\rho_s/2 a_{\varphi}$ Wb/m ² , calculate the total magnetic flux crossing the surface $\varphi = \pi/2$, $1 \le \rho \le 2m, 0 \le z \le 5m$.	2	3	3	1,2,3,10
6.	State Ampere's Law.	2	1	3	1,2,3,10
7.	A 10GHz plane wave travelling in free space has an amplitude 15V/m. Find the wave length.	2	3	5	1,2,3,4, 8,9,10
8.	Define the term loss tangent and explain its significance.	2	1	5	1,2,3,4, 8,9,10
9.	List the methods of EMI controlling techniques.	2	1	6	2,3,4,5, 8,9,10
10.	Define the term shielding index.	2	1	6	2,3,4,5, 8,9,10
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	Find E at $P(1,1,1)$ caused by four identical 3nC charges located at $P_1(1,1,0)$, $P_2(1,-1,0)$, $P_3(-1,1,0)$ and $P_4(-1,-1,0)$.	5	3	1	1,2,3
b)	Derive the expression for electric filed intensity due to a volume charge density ρ_v . Use Gauss's law.	3	1	1	1,2,3
12. a)	An electric field strength of 1000 V/m in a medium of $\epsilon_r=1$ is at an angle of 45 ⁰ to the normal of the boundary. Find the magnitude of E in air.	4	3	4	1,2,3,4, 10
b)	Derive continuity equation.	4	1	5	1,2,3,4, 8,9,10
13. a)	Determine H at P(0.4, 0.3, 0) in the field of an 8A filamentary current is directed inward from infinity to the origin on the positive x-axis, and then outward to infinity along the y-axis.	5	3	3	1,2,3,10
b)	Derive magnetic Boundary Conditions.	3	1	4	1,2,3,4, 10

14.	a)	The electric field intensity of uniform plane wave in air is 7500 V/m in the a_y direction, The wave is propagating in the a_x direction at a frequency of 2×10^9 rad/sec Find : (a) the wave length (b) the frequency (c) the time period (d) the amplitude of H .	4	3	5	1,2,3,4, 8,9,10
	b)	State and prove Poynting's theorem.	4	3	5	1,2,3,4, 8,9,10
15.	a)	Differentiate between inter system EMI and intra system EMI with two examples.	3	2	6	2,3,4,5, 8,9,10
	b)	Discuss EMI control Techniques in detail.	5	2	6	2,3,4,5, 8,9,10
16.	a)	A Sheet of charge density $\rho_s=2 \text{ nC/m}^2$ is placed at the plane x=3 in free space and a line charge $\rho_L=20 \text{ nC/m}$ is located at x=1, z=4 find E at P(4,5,6).	5	3	1	1,2,3
	b)	Write the general procedure for solving Laplace's and Poisson's equation.	3	1	2	2,3,10
17.		Answer any two of the following:				
	a)	Differentiate between scalar and vector magnetic potentials.	4	2	3	1,2,3,10
	b)	Derive the equation for wave propagation in a lossy dielectric.	4	1	4	1,2,3,4, 10
	c)	List the disadvantages of electromagnetic interference.	4	2	6	2,3,4,5, 8,9,10

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	56.25
2	Knowledge on application and analysis (Level-3 & 4)	43.75
3	*Critical thinking and ability to design (Level-5 & 6) (*wherever applicable)	-

ଔଔଷଧ୍ୟରାରେ

- There is a second secon
- by I wind the experiment for meeting that open my meeting means they
 - The second se

to Letter we would be a selice

(a) Determine 11 as a determine (1) in the frequencies of dimensionly computed at all partial investigation initially (in the angle are the possible a and and the recommentation products (the even of the second secon

Jamis 2 (Instance Boundary Constitution)