\square

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (EEE: CBCS) III-Semester Main Examinations, December-2018 Electromagnetic Field Theory

Time: $\mathbf{3}$ hours
Max. Marks: 60
Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q.No.	Stem of the question Part-A (10 $\times 2=20 \mathrm{Marks}$)
1.	dermine the gradient of the given field $\mathrm{V}=\rho z \sin \varphi+$
2.	Evaluate the electrostatic force of repulsion between two α-particles of charge $4 \times 10^{-19} \mathrm{C}$ each and separated by distance of $10^{-10} \mathrm{Cm}$.
3.	Define the terms i) dipole moment ii) Polarization.
4.	An electric field from a medium whose relative permittivity is 8 passes into a medium of relative permittivity 3 . If \mathbf{E} makes an angle of 45° with the boundary normal then what angle does the field makes with the interface in the second dielectric.
	ven the magnetic flux density $\rho_{S} / 2 a_{\varphi} \mathrm{Wb} / \mathrm{m}^{2}$, calculate the total

6. State Ampere's Law.
7. A 10 GHz plane wave travelling in free space has an amplitude $15 \mathrm{~V} / \mathrm{m}$. Find the wave length.
8. Define the term loss tangent and explain its significance.
9. List the methods of EMI controlling techniques.
10. Define the term shielding index.

Part-B $(5 \times 8=40$ Marks $)$

11. a) Find \mathbf{E} at $\mathbf{P}(1,1,1)$ caused by four identical 3 nC charges located at $\mathrm{P}_{1}(1,1,0), \mathrm{P}_{2}(1,-1,0), \mathrm{P}_{3}(-1,1,0)$ and $\mathrm{P}_{4}(-1,-1,0)$.
b) Derive the expression for electric filed intensity due to a volume charge density $\rho \mathrm{pv}$. Use Gauss's law.
12. a) An electric field strength of $1000 \mathrm{~V} / \mathrm{m}$ in a medium of $\varepsilon_{r}=1$ is at an angle of 45° to the normal of the boundary. Find the magnitude of \mathbf{E} in air.
b) Derive continuity equation.
13. a) Determine \mathbf{H} at $\mathbf{P}(0.4,0.3,0)$ in the field of an 8 A filamentary current is directed inward from infinity to the origin on the positive x-axis, and then outward to infinity along the y-axis.
b) Derive magnetic Boundary Conditions.

M	L	CO	PO
2	3	1	1,2,3
2	3	1	1,2,3
2	1	2	2,3,10
2	2	4	$\begin{gathered} 1,2,3,4 \\ 10 \end{gathered}$
2	3	3	1,2,3,10
2	1	3	1,2,3,10
2	3	5	$\begin{gathered} 1,2,3,4, \\ 8,9,10 \end{gathered}$
2	1	5	$\begin{gathered} 1,2,3,4 \\ 8,9,10 \end{gathered}$
2	1	6	$\begin{gathered} 2,3,4,5 \\ 8,9,10 \end{gathered}$
2	1	6	$\begin{gathered} 2,3,4,5 \\ 8,9,10 \end{gathered}$
5	3	1	1,2,3
3	1	1	1,2,3
4	3	4	$\begin{gathered} 1,2,3,4 \\ 10 \end{gathered}$
4	1	5	$\begin{gathered} 1,2,3,4 \\ 8,9,10 \end{gathered}$
5	3	3	1,2,3,10
3	1	4	$\begin{gathered} 1,2,3,4 \\ 10 \\ \hline \end{gathered}$

14. a) The electric field intensity of uniform plane wave in air is $7500 \mathrm{~V} / \mathrm{m}$ in

4	3	5	$1,2,3,4$,
			$8,9,10$
4	3	5	$1,2,3,4$,
3	2	6	$8,9,10$
$2,3,4,5$,			
			$8,9,10$
5	2	6	$2,3,4,5$,
5	3	1	$1,2,3$
5			
3	1	2	$2,3,10$
4	2	3	$1,2,3,10$
4	1	4	$1,2,3,4$,
4	2	6	$1,3,4,5$,
4			$8,9,10$

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	56.25
2	Knowledge on application and analysis (Level-3 \& 4)	43.75
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	$*$

